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ON MIXED CONVECTION MODES IN A VERTICAL LAYER WITH 
UNSTEADILY DEFORMABLE BOUNDARIES* 

G.V. LEVINA and A.A. NEPOMNIASHCHII 

The effect of three-dimensional periodic bending of boundaries on convection flows 
in a vertical layer is investigated in the case of mixed convection, the mostimport- 
ant from the application point of view. Application of the proposed methodenables 
to consider a more general formulation of the problem, when the channelwallsperform 
oscillations. Since the bending amplitude of oscillations of the layer walls, the 
fluid flow velocity and the phase velocity of running waves at the boundaries are 
assumed small, the method of small perturbations is used. At Grashof numbers close 
to critical,four different modes of flow are revealed, and the stability regionsand 
character of transition between them are determined. The obtained data indicate 
that the three-dimensional modulation of the boundary conditions may be used for 
controlling the stability of convection flows. 

The convective heat exchange is effectively intensified by crimpling the heat transfer 
surfaces, by internal ribs in channels of heat exchanger /l/ and, also, by superposition of 
oscillations on the fluid flow /2/. Theoretical investigations of the effect of spatially 
inhomogeneous boundary conditions on the stability and the secondary modes of convective flows 
are few, and in the main concern free convection /3,4/. 

A survey of the effect of active boundary deformation on isothermal flows appears in /5/. 

1. Let an incompressible fluid perform a plane motion in an infinite vertical layer. 
The solid boundaries of the layer, the mean distance between which is 2d, are maintained at 
temperatures +0 and are bent in opposite phase to sinusoidal law with amplitude qd and 
period 1. Variation of each boundary form with time is specified in the form of a running 
wave with the phase velocity C. The velocity stream along the layer averaged over the wave 
prior is maintained constant and equal Q. We describe the motion of fluid in dimensionless 
variables, selecting as the unit of length, stream function, time and temperature, respectiv- 

ely, d, v, d”v and 0. In the reference system moving along the vertical axis y with veloc- 
ity C the equations of convection are of the form 

(1.1) 

where $ is the stream function, T is the temperature, G is the Grashof number,PisthePrandtl 
number, and cis the dimensionless phase velocity of the wave at the boundary. 

Assuming that the displacement of walls is purely transverse and the flow three-dimension- 
ally periodic, we write the boundary conditions (in the moving reference system) as /6/ 

x=-((1ivcosky), T=l, $=q-2c, aq/ax=c 
x=l+~jcosky,T=-l,$=O,a$/ax=c 
C (5. y - 2n/k) = U (x, y); k = 2xd/l, q = Q/v 

We introduce the coordinate transformation which would rectify the curved boundaries of 
the layer /3,6/ 
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y’ = y, I’ = x/(1 -j- ‘, cos A-y) 

The explicit form of equations of convection in new variables is given in /3/. Assuming 
parameter 11 to be small, we represent the equations in the form of series in ~1 ,'A, 

i.21 

where L’, M’ , N' are the operators L, IPI, N in which the substitution dldy - d dg’. d dx - 
lV6JX’ has been carried out, and L,, M,,,N,, are operators whose explicit form is not pre- 
sented because of unwieldiness. The boundary conditions in new variables are stated on plane 
boundaries. 

x' = -1, T = I,$ = q - 2c, a$iax’ = c (1 + 9 cos kg’) (1.3) 

d = 1, T = -1, q = 0, agiiad = c (f -c q cos kf) 

The primes are henceforth omitted for brevity. 

2. When q=q=c=O the problem (1.2)) (1.3) has always the solution 

which corresponds to a plane-parallel motion. The threshold Grashof number G,,(k) when P < 
12 is increased, this solution becomes unstable with respect of monotonically increasing per- 
turbations of period 2nlk which results in the appearance of steady solutions periodic with 
respect to yin conformity with the general theory of secondary motion generation /?,a/. 

Below, we investigate the properties of solution branching when G is close to Go(k) in 
the case of small, but nonzero 9,~ and c. As in /4/ we seek a solution of problem (1.2!, 
(1.3) in the form of series in the small parameter a that 
the nonplane-parallel component of motion 

u _ ,p) = 5 E”,ip) 
?I=, 

Setting G - G, = 0 (E’), we introduce the notation 

G - Go = a?G(') 

We represent the relation between quantities E and 7\ 

where the coefficients I](*) are to be determined from the 
boundary value problem of the n-th order with respect to 

condition of solvability of the 
8. For the analysis of time evolu- 

tion of motions we apply the method of many scales /9/. Functions UT‘) in expansion (2.2) 
are assumed dependent on the set of variables t, = &3 , and we carry out in Eq.Cl.2) the sub- 
stitution 

defines the order of smallness of 

(2.2) 

in the form 

(2.3) 

(2.4) 

The quantities c and q are independent parameters. (In selecting as independent para- 
meters 71. c and q, the pressure drop on the wave length is a function of these parameters 
/6/). Nevertheless we shall consider in the beginning the case when c and (I are, together 
with G--G,, of order E' 

c = &W, q = $q(“) (2.6) 

In this case the time scales which determine the perturbation amplitude growth and the 
change of phase (which are defined by the increment and frequency of perturbations), are of 
the same order. At the same time the equation that defines the secondary motions proves to 
be the most interesting. The nonfulfillment of relations (2.6) is discussed in Sect.4. 

Let us substitute (2.2)- (2.6) into (1.2) and (1.3) and require the solvability of the 
boundary value problem in the class of functions that are bounded as y-too, t--r-cc in every 
order with respect to a. In the first order we have n(') = 0, and the solution is of the 

form 
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u(l) = alup) (5) @u + &Q (2) e-iku (2.7) 

where ulcl) = !'pl('), 9,(')) is a function that describes the neutral perturbation of the plane- 

parallel flow in the problem with plane boundaries a, = a, (tl, t,, . . .). In the second order 

with respect to E we obtain 

rl(z) = 0, au,/at, = 0, U@) = 2 Re[d~t)(s)eei~l's~~] + 

I$)(5)]Ul 12+ cwL,(z) + q(%,(r) 

u,&+1\, u*(+(~-o~z+2)~ 

where functions u,(') (5) and uO@) (5) are defined in /lo/. Finally in the third order with 

respect to E we obtain the equation of amplitude a,. Multiplying it by E? we obtain the 

approximate equation for the quantity ll = Eel that determines the nonlinear evolution of 
perturbation of form (2.7) 

da 
~=(ul+iui)a-%lulI’a+dq (2.8) 

The equation of type (2.8) was considered in the investigation of resonance excitation 
and oscillation of Van der Pol oscillatorbyan external periodic force /9/. The Coefficients 
c,,'/., d are connected to quantities I,J. s and D of /4/ by the relations 

x = Sil, d = D/I, or = 3 (G - GO)/1 

according to data in /4/ when P= 1, k= 1.38 we have 
e, = 2.3.10-Z (G - G,), x = i.1.1@, d = 7.3 

where the normalization of function He8,(')'(-I)= 1 is selected. The quantity ai= ck+bq is 
recalculated, with the transition to the moving reference system taken into account, the im- 
aginary part of the increment of the plane parallel perturbation of mixed convection flow with 
a given rate of flow, whose stability was earlier investigated in /11,12/. According tothese 
data, the quantity li for the same values of parameters is -0.6. 

We set 

a=Z(lUi]/%)'l', r=flClij, Uj.=y]ci], ]dlq =6(jOi]*/%y/* 

In new variables Eq.(2.8) assumes the form 

J2.9) 

z’ = (y + i sign ui) z - ) z 1% + 6 sign d (2.10) 

where the dot denotes differentiation with respect to 'F. In what follows we assume ci > 0, 
d> 0 for definiteness. All results are transferred in an obvious way to the case of oppos- 
ite signs of ui and d. All quantities appearing in Eq.(2.10) are of order unity. 

Equation (2.10) for the complex variable z is equivalent to the system of two real equa- 
tions. The limit modes for such system can be stationary points, cycles, and separatrix con- 
tours /13/. 

We shall use two representations of Eq.(2.10) in the form of a system of real equations. 
Setting X = Rez, Y = Imz we write (2.10) in the form 

X'=(y--X~-Y~)X-Y+6,Y'=(y-X*-Y~)Y +x (2.11) 

Note the system (2.11) also defines the phenomena near the threshold of convection onset 
in porous medium (*). 

Setting r= /z/,T=argz it is possible to reduce (2.10) to the form 

r' = yr - + + 6 cos cp, rq' = r - 6 sin cp (2.12) 

where the meaning of r is that of fundamental mode inducing instability in the case of plane 
boundaries and cp are phases that determine the position of vortex centers relative to the 
boundaries ((+ = 0 corresponds the vortex center location in the widest, and cp = s in the 
narrowest cross section). We stress thatinthe case of r = 0 the flow is not plane-parallel, 
but in expansion (2.2) the term (2.7), which defines the input of the basic mode, is absent. 

*J Liubimov D-V., Certain problems of convective stability in porous medium. Candidate Fiz.- 
Matem. Nauk Dissertation. Perm'skii Gos. Universitet, 1979. 
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3. Let us pass to the investigation of limit modes of system (2.10) and their stabiiit::. 
First, we shall consider the time independent solutions of system the motions that are stat- 
ionary in the moving reference system (convection vortices are carried along by the peristal- 
tic motions of the walls). From (2.12) we obtain the relations 

y=r2-J-,fm, tgc+7=-((;‘-r')-' 

The dependence of rL and 'p on yis shown in Figs.1 and 2 for 6 = 1. 6 = 1.3 and b = I..; 
lines 1,2, and 3). When 6 (6, = 2'1~3-"/~ z 1.24, then for any value of yi we have a unique 
stationary solution of system (2.12); with the increase of p the quantity * V- first increases, 
reaching the values rZ = 62 at y = 62, and then decreases; the phase v varies between (1 as 
l;+--CC and nas y-+-j-cc. If in some interval of values cf Y> :'_ < 7 < p, 6 ;-. 8, , the 

system has three steady solutions (corresponding to sections I, II, and III of curves -" and 
3 in Figs.1 and 2). It can be shown that y* are linked with 6 by the relation 

2 
~Z=+v*(v;+9)T(Y; jriz 

0 
-2 0 2 Y 

Fig.1 Fig.2 

(lines 1 and 2 in Fig.3). The branch merging points dy/dr2 = 0 lie on the line 

y=zra -J= -1 

(line 4 in Fig.1); the maximum values of rz for a given 6 is reached for y = r2 (line 5 in 
Fig.1) , and then 'p = n/2. 

Let us investigate the stability of steady solutions. Linearizing system (2.12) near 
solution (3.1), we obtain the expression for perturbation increments 

or taking into account (3.1) 

h* = y - 29 f [(y - 2r2)* + 2r*(y - r2) $1”’ 

The last formula shows that steady motion is always unstable (since 1, > O), when (y - 
r*) dyfd? > 0, which takes place for section II of curve r’(y). Thus section II is always 
unstable (saddle points correspond to it), and the instability is of a monotonic character. 
It follows from formula (3.2) that for y = 2r” (line 6 in Fig.1) solution (3.1) loses its 
stability in an oscillatory manner, if with this r4 (1. This is realized at 6 (6, = 2'1: Z 

1.41, with the boundary of oscillatory instability y0 (line 3 in Fig.3) is defined by the 
formula 6” = y,, (Y,,~ -t 4)/8 

The stable sections of curves r’(y),q(y) are shown in heavy lines in Figs.1 and 2. With 
8 (6, and increasing y the solution loses stability in an oscillatory manner at y = y,, (line 

3 in Fig.3). When 6> 6, the branch I is stable throughout the region of its existence? <y_ 
(to the left of line 2 in Fig.3). In the region &,(6 (6, branch III has a section of stab- 
ility (between lines I and 3 in Fig.3). Lines 2 and 3 intersect at point P, with coordinat- 

es y3 z 1.79, 6, z 1.27. 
In addition to stationary points the limit mode for system (2.10) can be a cycle, which 

is shown in Fig.3 by line 3 that is the branching boundary of the cycle with low amplitude 
and frequency, determined by formula (3.2). Calculation of the branching constant shows that 
along the whole oscillatory boundary of instability the cycle branching occurs softly, (in 
the direction of large 1'1, and the cycle is stable. At point P, in Fig.3 (y2=2, S=fi) 

at which the monotonic and oscillating instability merge, bifurcation of codimension 2 (two 

zero roots) that was described in /14/. 
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Fig. 3 

Apart the described above bifurcation bound- 
aries 1 and 3, at point P2 terminates the bifur- 

cation line 4 on which there exists the separa- 
trix ("homoclinal trajectory") doubly asymptotic 
to the saddle point that coresponds to steady 
solution on branch II. The boundary 4 was con- 
structed using numerical integration of system 
(2.12) by the Runge-Kutta method. When approach- 
ing boundary 4 from the side of smaller yI the 
cycle period approaches infinity in conformity 
with the logarithmic law. In region II the cycle 
is absent between lines 2 and 4. Line 4 termin- 

ates at point P,(y, s 1.82, & = 1.28) on line L', on 

which the saddle point becomes a saddle-node. 
When Y>Y~ on line 2 we have a loop of the sad- 
dle-node separatrix, from which, as y increases, 
a cycle of finite amplitude is generated; its 

period on approaching boundary 2 tends to infin- 
ity in proportion to (7 --+)-l/s. If y<y4 f new 
limit modes are not generated at the disappear- 
ance of the saddle-node(*). 

A cycle, thus, corresponds to limit mode of the system as t-03 in the region bounded 

by lines 3.4, and ? in Fig.3, when in region IV are simultaneously stable the cycle and the 
steady solution (on branch I). On line 3 the amplitude of cycle vanishes (for finite period), 
while on lines 2 and 4 the cycle period beccmes infinite (for finite amplitude). 

Let us consider the pattern of motion of the respective cycle. As long as the cycle am- 
plitude is not large (region IV and V in Fig.3), the order of trajectories on plane (X, Y) 
corresponding to the cycle, relative to the point r=O is zero, and the variable cp is a 
periodic function of time. Such solution definestheperiodic oscillations of vortex center 
relative to some mean position. On some line 5 (Fig.3) the cycle passes through point r = 0. 
The boundary 5 was determined by numerical integration of system (2.11); it touches line 3 
at point y = S = 0 and terminates on line 2 at point P, with ooordinates ylz 1.86.6.~1.30. 

In region VI -the order of cycle.;elative to point 
r = 0 becomes equal unity. The phase cp increases to 
2n over the cycle period T,, and the solution cor- 

Fig.4 

responds to a wave running relative to the walls with 
phase velocity SxlkT,. Thus two types of motion cor- 
respond to the cycles: oscillations of the vortex and 
the running waves. Note that the transition between 
these two types of motion is not a bifurcation, and is 
related only to the change of the cycle position rela- 
tive to point r=O which is not singular. 

Thus it is possible to separate in the parameter 
plane (v, 6) six regions (Fig.3). In region I exists 
and is stable a unique steady motion. In region II 
there are three stationary points of which only one 
corresponds to a-stable motion. In region III two out 
of three of the singular points, corresponding to dif- 
ferent amplitudes and positions of the vortex relative 
to the walls, are stable. In region IV are stable one 
of the steady solutions and the cycle that corresponds 
to oscillations of the vortex with respect to phase and 
amplitude. In regions V and VI the single steady solu- 
tion of the system is unstable, while the cycle is 
stable, and in region V it corresponds to vortex oscil- 
lations, and in region VI to a continuous running wave. 
The phase patterns for all these regions are schematic- 
ally shown in Fig.4. Stationary points related to 
branches I, II, and III are denoted by S,, SL. S3 , the 

*) Aponin Iu.M., Asymptotic formulas for the limit cycle at degeneration into a loop of the 
saddle-node separatrix. Preprint, n.-i. VTs, Akad. Nauk SSSR, Pushchino, 1980. 
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single stationary point by s, and ~-cl--_, the cycle point by C. 

4. Let us discuss the character of change of flow mode in the case, when the relations 
(2.6), that establishes and the real and imaginary parts of increment or and u‘, are of one 
order, is not satisfied. 

If C>E* or 4% @, then e1 > D,; according to (2.9), this case is suitable to the 
limit Y--LO. 6-O. The boundary of oscillating instability of steady solution in this limit 
assumes the form y = 26%. or 

ol. = 2v&j*!o,' 

To determine the asymptotics of boundary 5 we represent the solution of system (2.11; in 
the form of series in powers of the small parameter 6 

setting y= T@. Functions X, and Y, are assumed dependent on time t,,= 6'"~. ,n = 0. 1. . . . . 
In the first order with respect to 6 we have 

x1 = A cos (% + T), Y, = i LA sin (To f rp) (4.1) 

where A and cp may be functions of slow time. The condition of solution boundedness we have 
in second order aAiar, = &p/as, = 0, while in the third order we have 

dA/ar, = A (r - 2 - A?), dq/dr, = 0 

From this follows that the equation of cycle is of the form (4.1), where ii J, r -- 2. 
The cycle passes through the point X = Y= 0 when r =3 so that the asymptotica of bound- 
ary 5 at y as 6-O has the form v = 362, which yields the boundary of transition from 
oscillations to running waves 

Is, = 3xdlnVai" 

This result is confirmed by direct numerical integration of system (2.11). 
If c and g are considerably smaller than ea. it is necessary to omit in Eq.(Z.@) the 

term with By, which brings us to the case considered earlier in /4/. The stable motion is 
then steady. 

5. In conclusion we shall consider the basic physical consequences of obtained results 
in the case of pumping fluid through a channel with stationary walls (the case of nonstation- 
ary boundaries may be similarly treated). Mixed convection flow with a given discharge rate 
is steady, as long as the Grashof number does not exceed a certain threshold value. With 
further increase of temperature difference the flow spontaneously becomes unsteady. The 
violation threshold of flow steadiness is heightened, as the bending amplitude of the bound- 
ary increases and the flow rate of fluid decreases; the smooth bending of the boundary, thus, 
not only increases the heat exchange but, also, stabilizes the flow. The nature of unstead- 
iness close to the threshold materially depends on the value of bending parameter 6. When 

b<&, small oscillations of vortices that are realized, continuously pass with increasing 
Grashof number, to straight-through motion of vortices. When 6>S, the unsteady motion a- 
rises in the form of oscillations (&<6<6,), or through motion ,of vortices (6>%) with a 
very long time period defined by a sequence of prolonged time intervals during which the 
vortex position slowly changes (the phase trajectory passes close to a saddle point), alter- 
nating with short intervals of rapid rearrangement of flow. In region 8,<6<fi, are possible 
hysteresis effects between various flow modes. The diversity of flow modes and the exist- 
ence of hysteresis effects open possibilities of an effective control of flow modes. 

In the case of unsteady boundaries a system of vortices completely carried away by the 
peristaltic motion of the boundary, correspond to steady solution in the stationary reference 

system. To a solution in the form of oscillations corresponds a system of vortices moving at 
phase velocity of the wall and simultaneously oscillating; to a solution of a running wave 
type corresponds a system of vortices moving at mean phase velocity, different from the wall 
phase velocity. 

The authors thank E.M. Zhukhovitskii for statement of the problem and interest in the 
work, and D.V. Liubimov, L.P. Vozovoi and N.I. Lobov for the discussion. 
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